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Abstract-By means of the usual methodology used in proving the uniqueness of solutions of
quasi-static boundary-value problems in solid mechanics with infinitesimal deformations, it is
shown that in a material modeled by generalized plasticity theory, a sufficient condition for
uniqueness of the strain-rate field holds if the material is not merely work·hardening but if its
plastic modulus exceeds a certain threshold value that increases with the degree of deviation of the
plastic strain rate from the normal to the loading surface.

1. INTRODUCTION

Sufficient conditions for the uniqueness of the strain-rate fields in solids described by
classical plasticity theory were derived by HiJl[l] for materials obeying an associated flow
law, according to which the plastic strain rate must be normal to the yield surface, and
extended by Raniecki[2] for materials with non-associated flow laws. It is the purpose of
this paper to derive analogous conditions for solids described by generalized plasticity
theory[3-5], in which a yield surface is not necessary.

By generalized plasticity I mean a model of rate-independent inelastic behavior with
elastic range, which at infinitesimal deformation can be described as follows. Let
~ = (~l" .. '~n) denote an array of internal variables, so that the isothermal stress-strain
relation (with the temperature dependence not shown) is (1 = t1{s, ~) and the corresponding
strain-stress relation is s = s((1, ~). The plastic strain rate t p is defined as

(1)

the definition essentially being that of Rice[6]. If C ::: o(1losl~ is the elastic tangent modulus
(usually assumed constant in the infinitesimal theory), then

if = C(t - t p
);

the notation used here will be one in which symmetric second-rank tensors are represented
as six-dimensional vectors, so that C is a symmetric 6 x 6 matrix.

The rate equations for the internal variables ell are assumed to have the form

(2)

where <p is a non-negative quantity. Defining

we may write, by combining eqns (1) and (2)

ill' = <pro
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Since qJ is not defined uniquely, it may be chosen to equal !£PI (where we write

lal ~( .j(aTa». This choice makes r a unit vector, i.e. Irl = 1.
In classical plasticity, as opposed to generalized plasticity, qJ is positive only when the

yield criterion

!(a,~) = 0

is met; an explicit form for <p is obtained by means of the consistency condition.
In generalized plasticity, a form for qJ is assumed, namely

(4)

where S is a given positive function of the state variables, not ne~ssarily related to any
yield criterion, and n is the unit normal to the loading surface (the boundary of the elastic
range corresponding to the given state, which is not the same as the elastic domain at the
given ~-see Ref. [5J). n may be interpreted either as the normal vector in a stress space
in the usual sense, or in strain space if this space is regarded as a Riemannian manifold
with C as the metric.

The flow equation accordingly becomes

(5)

With the help of eqn (5), the stress rate may now be written in terms of the strain rate

. c(. <nTO»)a= t- Sr.

It follows from eqn (6) that

and

Consequently nTa has the same sign as nTCi if and only if

H>O

where

(6)

(8)
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may be regarded as the plastic modulus. Equation (7) is thus the criterion for work
hardening in generalized plasticity. If it is met, then the flow equation may be written as

2. THE UNIQUENESS THEOREM

The classical condition for the uniqueness of the strain-rate field, as formulated by
HiIl[7], is

where a1 and 82 are two strain-rate fields compatible with the kinematic boundary
conditions and the iJfl (ex = 1,2) are the stress-rate field associated with alZ through eqn (6),
not necessarily statically admissible. Noting that, for any real numbers a and b

(a) - (b) = y(a - b)

for some number y with 0 ~ y ~ 1, we obtain

To simplify the writing we introduce the following definitions:

so that

where c may be regarded as the cosine of the angle of deviation from normality.
We can now write w as

With no loss of generality, we may decompose u as

u=ex(p+q)+v

where ex is some real number and v is a vector orthogonal to p + q, that is

It is now easy to see that

(9)
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and

consequently
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As a result of eqn (9), however, we have vTp = _vTq, and therefore the contribution of v
to w is non-negative. By disregarding it, and by setting y = 1 (the worst case, we obtain
the lower bound

so that a sufficient condition for the uniqueness of t is

(10)

Obviously, if the body is everywhere elastic (r = 0) then S > 0 is sufficient.
In view of definition (8) of the plastic modulus H, condition (10) may be rewritten as

where

H >Ho (11)

In the form (11), the condition was derived by Raniecki[2] for solids described by classical
plasticity theory. Ho, which in general depends on the state, is thus seen to be a threshold
value of the plastic modulus that must everywhere be exceeded by the actual plastic
modulus for the uniqueness criterion to be satisfied unconditionally. Clearly, Ho =0 at all
states if and only if normality is obeyed.

It must be understood that the uniqueness condition (10) or (11) is valid for boundary
value problems in which arbitrary states of stress can occur. If, as a result of symmetry or
other consideration, only a limited set of stress states is expected, then the condition may
be weakened, as will be seen from the following examples.

3. EXAMPLES

Some examples of uniqueness criteria in solids with non-associated flow laws were
studied by Mr6z[8]. Two additional examples will be considered here.

(1) We consider first a Uvy-St. Venant material, for which the Tresca loading surface
is assumed in conjunction with the Uvy (or Uvy-Mises) flow rule. Here r is given in
tensor form by

~'t .. =
IJ J(2J2 )

(12)
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while n is most easily expressed tensorially with respect to the principal axes of stress.
Thus, if C11 > C12 > eT3' then n is given by

~ ~1·o -1

If the elasticity is assumed isotropic, with shear modulus G, then we obtain ICI /
2rl = .j(2G)r

and ICI/20 l = .j(2G)0, since both rand 0 are purely deviatoric tensors; thus

and hence

While this is zero in simple shear, it approaches 2G(1 - .j3/2) for states close to uniaxial
stress. It should be noted that the actual hardening modulus in simple shear, dT/dyP, is
just !H.

If, however, two of the principal stresses are identically equal, say eT2 = eT3, then, by
symmetry

o
-!

o

and it can easily be deduced that Ho =O. The actual hardening modulus deT/dtP in a
uniaxial test (simple tension or compression) is tHo

(2) An important non-associative material model, frequently used for non-dilatant
rocks and soils, uses the Uvy-Mises flow law, with r given by eqn (12), together with the
Mises-Schleicher loading surface, which in classical plasticity coincides with the yield
surface described by the equation

!(tI,r,) = JJ2 - k(P,() = 0

where s denotes the stress deviator, J2 =!STS =!SjjSlj, and p = -leTu; this yield criterion
is usually called Drucker-Prager if k is a straight-line function of p. It follows that

where

p= J(j)::
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may be regarded as the incremental coefficient of friction (tangent of the angle of internal
friction) on the octahedral planes. Consequently

For this model we can likewise use eqn (6) to determine the actual hardening moduli in
specific tests, obtaining

in simple shear and tension/compression, respectively.
Again assuming isotropic linear elasticity with shear modulus G and Poisson's ratio

v, we have

so that

Note that this is independent of the state of stress, except possibly through p..
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